Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Generalized Implementation of Wasserstein Distance in GANs (2012.03420v2)

Published 7 Dec 2020 in cs.LG and stat.ML

Abstract: Wasserstein GANs (WGANs), built upon the Kantorovich-Rubinstein (KR) duality of Wasserstein distance, is one of the most theoretically sound GAN models. However, in practice it does not always outperform other variants of GANs. This is mostly due to the imperfect implementation of the Lipschitz condition required by the KR duality. Extensive work has been done in the community with different implementations of the Lipschitz constraint, which, however, is still hard to satisfy the restriction perfectly in practice. In this paper, we argue that the strong Lipschitz constraint might be unnecessary for optimization. Instead, we take a step back and try to relax the Lipschitz constraint. Theoretically, we first demonstrate a more general dual form of the Wasserstein distance called the Sobolev duality, which relaxes the Lipschitz constraint but still maintains the favorable gradient property of the Wasserstein distance. Moreover, we show that the KR duality is actually a special case of the Sobolev duality. Based on the relaxed duality, we further propose a generalized WGAN training scheme named Sobolev Wasserstein GAN (SWGAN), and empirically demonstrate the improvement of SWGAN over existing methods with extensive experiments.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Minkai Xu (40 papers)
  2. Zhiming Zhou (24 papers)
  3. Guansong Lu (20 papers)
  4. Jian Tang (327 papers)
  5. Weinan Zhang (322 papers)
  6. Yong Yu (219 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.