Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FPRAS Approximation of the Matrix Permanent in Practice (2012.03367v1)

Published 6 Dec 2020 in cs.DS and cs.CC

Abstract: The matrix permanent belongs to the complexity class #P-Complete. It is generally believed to be computationally infeasible for large problem sizes, and significant research has been done on approximation algorithms for the matrix permanent. We present an implementation and detailed runtime analysis of one such Markov Chain Monte Carlo (MCMC) based Fully Polynomial Randomized Approximation Scheme (FPRAS) for the matrix permanent, which has previously only been described theoretically and with big-Oh runtime analysis. We demonstrate by analysis and experiment that the constant factors hidden by previous big-Oh analyses result in computational infeasibility.

Citations (5)

Summary

We haven't generated a summary for this paper yet.