Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised Adversarially-Robust Representation Learning on Graphs (2012.02486v2)

Published 4 Dec 2020 in cs.LG and cs.AI

Abstract: Unsupervised/self-supervised pre-training methods for graph representation learning have recently attracted increasing research interests, and they are shown to be able to generalize to various downstream applications. Yet, the adversarial robustness of such pre-trained graph learning models remains largely unexplored. More importantly, most existing defense techniques designed for end-to-end graph representation learning methods require pre-specified label definitions, and thus cannot be directly applied to the pre-training methods. In this paper, we propose an unsupervised defense technique to robustify pre-trained deep graph models, so that the perturbations on the input graph can be successfully identified and blocked before the model is applied to different downstream tasks. Specifically, we introduce a mutual information-based measure, \textit{graph representation vulnerability (GRV)}, to quantify the robustness of graph encoders on the representation space. We then formulate an optimization problem to learn the graph representation by carefully balancing the trade-off between the expressive power and the robustness (\emph{i.e.}, GRV) of the graph encoder. The discrete nature of graph topology and the joint space of graph data make the optimization problem intractable to solve. To handle the above difficulty and to reduce computational expense, we further relax the problem and thus provide an approximate solution. Additionally, we explore a provable connection between the robustness of the unsupervised graph encoder and that of models on downstream tasks. Extensive experiments demonstrate that even without access to labels and tasks, our model is still able to enhance robustness against adversarial attacks on three downstream tasks (node classification, link prediction, and community detection) by an average of +16.5% compared with existing methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Jiarong Xu (24 papers)
  2. Yang Yang (884 papers)
  3. Junru Chen (14 papers)
  4. Chunping Wang (23 papers)
  5. Xin Jiang (242 papers)
  6. Jiangang Lu (6 papers)
  7. Yizhou Sun (149 papers)
Citations (31)

Summary

We haven't generated a summary for this paper yet.