Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Applying the Chebyshev-Tau spectral method to solve the parabolic equation model of wide-angle rational approximation in ocean acoustics (2012.02405v3)

Published 4 Dec 2020 in cs.CE, cs.NA, math.NA, and physics.flu-dyn

Abstract: Solving an acoustic wave equation using a parabolic approximation is a popular approach for many existing ocean acoustic models. Commonly used parabolic equation (PE) model programs, such as the range-dependent acoustic model (RAM), are discretized by the finite difference method (FDM). Considering the idea and theory of the wide-angle rational approximation, a discrete PE model using the Chebyshev spectral method (CSM) is derived, and the code is developed. This method is currently suitable only for range-independent waveguides. Taking three ideal fluid waveguides as examples, the correctness of using the CSM discrete PE model in solving the underwater acoustic propagation problem is verified. The test results show that compared with the RAM, the method proposed in this paper can achieve higher accuracy in computational underwater acoustics and requires fewer discrete grid points. After optimization, this method is more advantageous than the FDM in terms of speed. Thus, the CSM provides high-precision reference standards for benchmark examples of the range-independent PE model.

Citations (16)

Summary

We haven't generated a summary for this paper yet.