Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Laptop Ensemble Performance System using Recurrent Neural Networks (2012.02322v1)

Published 3 Dec 2020 in cs.HC, cs.SD, and eess.AS

Abstract: The popularity of applying machine learning techniques in musical domains has created an inherent availability of freely accessible pre-trained neural network (NN) models ready for use in creative applications. This work outlines the implementation of one such application in the form of an assistance tool designed for live improvisational performances by laptop ensembles. The primary intention was to leverage off-the-shelf pre-trained NN models as a basis for assisting individual performers either as musical novices looking to engage with more experienced performers or as a tool to expand musical possibilities through new forms of creative expression. The system expands upon a variety of ideas found in different research areas including new interfaces for musical expression, generative music and group performance to produce a networked performance solution served via a web-browser interface. The final implementation of the system offers performers a mixture of high and low-level controls to influence the shape of sequences of notes output by locally run NN models in real time, also allowing performers to define their level of engagement with the assisting generative models. Two test performances were played, with the system shown to feasibly support four performers over a four minute piece while producing musically cohesive and engaging music. Iterations on the design of the system exposed technical constraints on the use of a JavaScript environment for generative models in a live music context, largely derived from inescapable processing overheads.

Citations (5)

Summary

We haven't generated a summary for this paper yet.