Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Impossibility of Convergence of Mixed Strategies with No Regret Learning (2012.02125v3)

Published 3 Dec 2020 in cs.GT and stat.ML

Abstract: We study the limiting behavior of the mixed strategies that result from optimal no-regret learning strategies in a repeated game setting where the stage game is any 2 by 2 competitive game. We consider optimal no-regret algorithms that are mean-based and monotonic in their argument. We show that for any such algorithm, the limiting mixed strategies of the players cannot converge almost surely to any Nash equilibrium. This negative result is also shown to hold under a broad relaxation of these assumptions, including popular variants of Online-Mirror-Descent with optimism and/or adaptive step-sizes. Finally, we conjecture that the monotonicity assumption can be removed, and provide partial evidence for this conjecture. Our results identify the inherent stochasticity in players' realizations as a critical factor underlying this divergence in outcomes between using the opponent's mixtures and realizations to make updates.

Citations (1)

Summary

We haven't generated a summary for this paper yet.