Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cross-Correlation Based Discriminant Criterion for Channel Selection in Motor Imagery BCI Systems (2012.01749v5)

Published 3 Dec 2020 in eess.SP and cs.LG

Abstract: Objective. Many electroencephalogram (EEG)-based brain-computer interface (BCI) systems use a large amount of channels for higher performance, which is time-consuming to set up and inconvenient for practical applications. Finding an optimal subset of channels without compromising the performance is a necessary and challenging task. Approach. In this article, we proposed a cross-correlation based discriminant criterion (XCDC) which assesses the importance of a channel for discriminating the mental states of different motor imagery (MI) tasks. Channels are ranked and selected according to the proposed criterion. The efficacy of XCDC is evaluated on two motor imagery EEG datasets. Main results. In both datasets, XCDC significantly reduces the amount of channels without compromising classification accuracy compared to the all-channel setups. Under the same constraint of accuracy, the proposed method requires fewer channels than existing channel selection methods based on Pearson's correlation coefficient and common spatial pattern. Visualization of XCDC shows consistent results with neurophysiological principles. Significance. This work proposes a quantitative criterion for assessing and ranking the importance of EEG channels in MI tasks and provides a practical method for selecting the ranked channels in the calibration phase of MI BCI systems, which alleviates the computational complexity and configuration difficulty in the subsequent steps, leading to real-time and more convenient BCI systems.

Citations (16)

Summary

We haven't generated a summary for this paper yet.