Papers
Topics
Authors
Recent
2000 character limit reached

Adapt-and-Adjust: Overcoming the Long-Tail Problem of Multilingual Speech Recognition

Published 3 Dec 2020 in cs.CL, cs.AI, and cs.LG | (2012.01687v1)

Abstract: One crucial challenge of real-world multilingual speech recognition is the long-tailed distribution problem, where some resource-rich languages like English have abundant training data, but a long tail of low-resource languages have varying amounts of limited training data. To overcome the long-tail problem, in this paper, we propose Adapt-and-Adjust (A2), a transformer-based multi-task learning framework for end-to-end multilingual speech recognition. The A2 framework overcomes the long-tail problem via three techniques: (1) exploiting a pretrained multilingual LLM (mBERT) to improve the performance of low-resource languages; (2) proposing dual adapters consisting of both language-specific and language-agnostic adaptation with minimal additional parameters; and (3) overcoming the class imbalance, either by imposing class priors in the loss during training or adjusting the logits of the softmax output during inference. Extensive experiments on the CommonVoice corpus show that A2 significantly outperforms conventional approaches.

Citations (45)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.