Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computing the matrix fractional power with the double exponential formula (2012.01667v2)

Published 3 Dec 2020 in math.NA and cs.NA

Abstract: Two quadrature-based algorithms for computing the matrix fractional power $A\alpha$ are presented in this paper. These algorithms are based on the double exponential (DE) formula, which is well-known for its effectiveness in computing improper integrals as well as in treating nearly arbitrary endpoint singularities. The DE formula transforms a given integral into another integral that is suited for the trapezoidal rule; in this process, the integral interval is transformed to the infinite interval. Therefore, it is necessary to truncate the infinite interval into an appropriate finite interval. In this paper, a truncation method, which is based on a truncation error analysis specialized to the computation of $A\alpha$, is proposed. Then, two algorithms are presented -- one computes $A\alpha$ with a fixed number of abscissas, and the other computes $A\alpha$ adaptively. Subsequently, the convergence rate of the DE formula for Hermitian positive definite matrices is analyzed. The convergence rate analysis shows that the DE formula converges faster than the Gaussian quadrature when $A$ is ill-conditioned and $\alpha$ is a non-unit fraction. Numerical results show that our algorithms achieved the required accuracy and were faster than other algorithms in several situations.

Citations (6)

Summary

We haven't generated a summary for this paper yet.