Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Short effective intervals containing primes in arithmetic progressions and the seven cubes problem (2012.01413v1)

Published 2 Dec 2020 in math.NT

Abstract: Let $q\ge 3$ be a non-exceptional modulus $q\ge3$, and let $a$ be a positive integer coprime with $q$. For any $\epsilon>0$, there exists $\alpha>0$ (computable), such that for all $x\ge \alpha (\log q)2$, the interval $\left[ ex,e{x+\epsilon }\right]$ contains a prime $p$ in the arithmetic progression $a \bmod q$. This gives the bound for the least prime in this arithmetic progression: $P(a,q) \le e{\alpha (\log q)2}$. For instance for all $q\ge 10{30}$, $P(a,q) \le e{4.401(\log q)2}$. Finally, we apply this result to establish that every integer larger than $e{71\,000}$ is a sum of seven cubes.

Summary

We haven't generated a summary for this paper yet.