Papers
Topics
Authors
Recent
2000 character limit reached

On the Error Resistance of Hinge Loss Minimization

Published 2 Dec 2020 in cs.LG | (2012.00989v1)

Abstract: Commonly used classification algorithms in machine learning, such as support vector machines, minimize a convex surrogate loss on training examples. In practice, these algorithms are surprisingly robust to errors in the training data. In this work, we identify a set of conditions on the data under which such surrogate loss minimization algorithms provably learn the correct classifier. This allows us to establish, in a unified framework, the robustness of these algorithms under various models on data as well as error. In particular, we show that if the data is linearly classifiable with a slightly non-trivial margin (i.e. a margin at least $C/\sqrt{d}$ for $d$-dimensional unit vectors), and the class-conditional distributions are near isotropic and logconcave, then surrogate loss minimization has negligible error on the uncorrupted data even when a constant fraction of examples are adversarially mislabeled.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.