Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MAUIL: Multi-level Attribute Embedding for Semi-supervised User Identity Linkage (2012.00936v2)

Published 2 Dec 2020 in cs.SI

Abstract: User identity linkage (UIL) across social networks has recently attracted an increasing amount of attention due to its significant research challenges and practical value. Most of the existing methods use a single method to express different types of attribute features. However, the simplex pattern can neither cover the entire set of different attribute features nor capture the higher-level semantic features in the attribute text. This paper establishes a novel semisupervised model, namely the multilevel attribute embedding for semisupervised user identity linkage (MAUIL), to seek the common user identity across social networks. MAUIL includes two components: multilevel attribute embedding and regularized canonical correlation analysis (RCCA)-based linear projection. Specifically, the text attributes for each network are first divided into three types: character-level, word-level, and topic-level attributes. Second, unsupervised approaches are employed to extract the corresponding three types of text attribute features, and user relationships are embedded as a complimentary feature. All the resultant features are combined to form the final representation of each user. Finally, target social networks are projected into a common correlated space by RCCA with the help of a small number of prematched user pairs. We demonstrate the superiority of the proposed method over state-of-the-art methods through extensive experiments on two real-world datasets.

Citations (36)

Summary

We haven't generated a summary for this paper yet.