Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cyber-Attack Consequence Prediction (2012.00648v2)

Published 1 Dec 2020 in cs.CR and cs.HC

Abstract: Cyber-physical systems posit a complex number of security challenges due to interconnection of heterogeneous devices having limited processing, communication, and power capabilities. Additionally, the conglomeration of both physical and cyber-space further makes it difficult to devise a single security plan spanning both these spaces. Cyber-security researchers are often overloaded with a variety of cyber-alerts on a daily basis many of which turn out to be false positives. In this paper, we use machine learning and natural language processing techniques to predict the consequences of cyberattacks. The idea is to enable security researchers to have tools at their disposal that makes it easier to communicate the attack consequences with various stakeholders who may have little to no cybersecurity expertise. Additionally, with the proposed approach researchers' cognitive load can be reduced by automatically predicting the consequences of attacks in case new attacks are discovered. We compare the performance through various machine learning models employing word vectors obtained using both tf-idf and Doc2Vec models. In our experiments, an accuracy of 60% was obtained using tf-idf features and 57% using Doc2Vec method for models based on LinearSVC model.

Citations (4)

Summary

We haven't generated a summary for this paper yet.