Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lack of practical identifiability may hamper reliable predictions in COVID-19 epidemic models (2012.00443v2)

Published 1 Dec 2020 in physics.soc-ph

Abstract: Compartmental models are widely adopted to describe and predict the spreading of infectious diseases. The unknown parameters of such models need to be estimated from the data. Furthermore, when some of the model variables are not empirically accessible, as in the case of asymptomatic carriers of COVID-19, they have to be obtained as an outcome of the model. Here, we introduce a framework to quantify how the uncertainty in the data impacts the determination of the parameters and the evolution of the unmeasured variables of a given model. We illustrate how the method is able to characterize different regimes of identifiability, even in models with few compartments. Finally, we discuss how the lack of identifiability in a realistic model for COVID-19 may prevent reliable forecasting of the epidemic dynamics.

Summary

We haven't generated a summary for this paper yet.