Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Probabilistic Grammars for Equation Discovery (2012.00428v2)

Published 1 Dec 2020 in cs.LG, cs.FL, and stat.ML

Abstract: Equation discovery, also known as symbolic regression, is a type of automated modeling that discovers scientific laws, expressed in the form of equations, from observed data and expert knowledge. Deterministic grammars, such as context-free grammars, have been used to limit the search spaces in equation discovery by providing hard constraints that specify which equations to consider and which not. In this paper, we propose the use of probabilistic context-free grammars in equation discovery. Such grammars encode soft constraints, specifying a prior probability distribution on the space of possible equations. We show that probabilistic grammars can be used to elegantly and flexibly formulate the parsimony principle, that favors simpler equations, through probabilities attached to the rules in the grammars. We demonstrate that the use of probabilistic, rather than deterministic grammars, in the context of a Monte-Carlo algorithm for grammar-based equation discovery, leads to more efficient equation discovery. Finally, by specifying prior probability distributions over equation spaces, the foundations are laid for Bayesian approaches to equation discovery.

Citations (32)

Summary

We haven't generated a summary for this paper yet.