Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Time-Space Lower Bounds for Simulating Proof Systems with Quantum and Randomized Verifiers (2012.00330v2)

Published 1 Dec 2020 in cs.CC

Abstract: A line of work initiated by Fortnow in 1997 has proven model-independent time-space lower bounds for the $\mathsf{SAT}$ problem and related problems within the polynomial-time hierarchy. For example, for the $\mathsf{SAT}$ problem, the state-of-the-art is that the problem cannot be solved by random-access machines in $nc$ time and $n{o(1)}$ space simultaneously for $c < 2\cos(\frac{\pi}{7}) \approx 1.801$. We extend this lower bound approach to the quantum and randomized domains. Combining Grover's algorithm with components from $\mathsf{SAT}$ time-space lower bounds, we show that there are problems verifiable in $O(n)$ time with quantum Merlin-Arthur protocols that cannot be solved in $nc$ time and $n{o(1)}$ space simultaneously for $c < \frac{3+\sqrt{3}}{2} \approx 2.366$, a super-quadratic time lower bound. This result and the prior work on $\mathsf{SAT}$ can both be viewed as consequences of a more general formula for time lower bounds against small-space algorithms, whose asymptotics we study in full. We also show lower bounds against randomized algorithms: there are problems verifiable in $O(n)$ time with (classical) Merlin-Arthur protocols that cannot be solved in $nc$ randomized time and $n{o(1)}$ space simultaneously for $c < 1.465$, improving a result of Diehl. For quantum Merlin-Arthur protocols, the lower bound in this setting can be improved to $c < 1.5$.

Citations (2)

Summary

We haven't generated a summary for this paper yet.