Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymmetric Quantum Concatenated and Tensor Product Codes with Large Z-Distances (2012.00226v2)

Published 1 Dec 2020 in cs.IT, math.IT, and quant-ph

Abstract: In this paper, we present a new construction of asymmetric quantum codes (AQCs) by combining classical concatenated codes (CCs) with tensor product codes (TPCs), called asymmetric quantum concatenated and tensor product codes (AQCTPCs) which have the following three advantages. First, only the outer codes in AQCTPCs need to satisfy the orthogonal constraint in quantum codes, and any classical linear code can be used for the inner, which makes AQCTPCs very easy to construct. Second, most AQCTPCs are highly degenerate, which means they can correct many more errors than their classical TPC counterparts. Consequently, we construct several families of AQCs with better parameters than known results in the literature. Third, AQCTPCs can be efficiently decoded although they are degenerate, provided that the inner and outer codes are efficiently decodable. In particular, we significantly reduce the inner decoding complexity of TPCs from $\Omega(n_2a{n_1})(a>1)$ to $O(n_2)$ by considering error degeneracy, where $n_1$ and $n_2$ are the block length of the inner code and the outer code, respectively. Furthermore, we generalize our concatenation scheme by using the generalized CCs and TPCs correspondingly.

Citations (6)

Summary

We haven't generated a summary for this paper yet.