Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Data-Driven Study to Discover, Characterize, and Classify Convergence Bidding Strategies in California ISO Energy Market (2012.00076v1)

Published 30 Nov 2020 in eess.SP and cs.LG

Abstract: Convergence bidding has been adopted in recent years by most Independent System Operators (ISOs) in the United States as a relatively new market mechanism to enhance market efficiency. Convergence bidding affects many aspects of the operation of the electricity markets and there is currently a gap in the literature on understanding how the market participants strategically select their convergence bids in practice. To address this open problem, in this paper, we study three years of real-world market data from the California ISO energy market. First, we provide a data-driven overview of all submitted convergence bids (CBs) and analyze the performance of each individual convergence bidder based on the number of their submitted CBs, the number of locations that they placed the CBs, the percentage of submitted supply or demand CBs, the amount of cleared CBs, and their gained profit or loss. Next, we scrutinize the bidding strategies of the 13 largest market players that account for 75\% of all CBs in the California ISO market. We identify quantitative features to characterize and distinguish their different convergence bidding strategies. This analysis results in revealing three different classes of CB strategies that are used in practice. We identify the differences between these strategic bidding classes and compare their advantages and disadvantages. We also explain how some of the most active market participants are using bidding strategies that do not match any of the strategic bidding methods that currently exist in the literature.

Citations (3)

Summary

We haven't generated a summary for this paper yet.