Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Vertex Sparsification for Edge Connectivity in Polynomial Time (2011.15101v2)

Published 30 Nov 2020 in cs.DS

Abstract: An important open question in the area of vertex sparsification is whether $(1+\epsilon)$-approximate cut-preserving vertex sparsifiers with size close to the number of terminals exist. The work Chalermsook et al. (SODA 2021) introduced a relaxation called connectivity-$c$ mimicking networks, which asks to construct a vertex sparsifier which preserves connectivity among $k$ terminals exactly up to the value of $c$, and showed applications to dynamic connectivity data structures and survivable network design. We show that connectivity-$c$ mimicking networks with $\widetilde{O}(kc3)$ edges exist and can be constructed in polynomial time in $n$ and $c$, improving over the results of Chalermsook et al. (SODA 2021) for any $c \ge \log n$, whose runtimes depended exponentially on $c$.

Citations (11)

Summary

We haven't generated a summary for this paper yet.