Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On iterative methods for solving ill-posed problems modeled by PDE's (2011.14441v1)

Published 29 Nov 2020 in math.NA and cs.NA

Abstract: We investigate the iterative methods proposed by Maz'ya and Kozlov (see [KM1], [KM2]) for solving ill-posed inverse problems modeled by partial differential equations. We consider linear evolutionary problems of elliptic, hyperbolic and parabolic types. Each iteration of the analyzed methods consists in the solution of a well posed problem (boundary value problem or initial value problem respectively). The iterations are described as powers of affine operators, as in [KM2]. We give alternative convergence proofs for the algorithms by using spectral theory and the fact that the linear parts of these affine operators are non-expansive with additional functional analytical properties (see [Le1,2]). Also problems with noisy data are considered and estimates for the convergence rate are obtained under a priori regularity assumptions on the problem data.

Citations (49)

Summary

We haven't generated a summary for this paper yet.