Papers
Topics
Authors
Recent
2000 character limit reached

Phase space formulation of the Abelian and non-Abelian quantum geometric tensor

Published 29 Nov 2020 in quant-ph and hep-th | (2011.14310v1)

Abstract: The geometry of the parameter space is encoded by the quantum geometric tensor, which captures fundamental information about quantum states and contains both the quantum metric tensor and the curvature of the Berry connection. We present a formulation of the Berry connection and the quantum geometric tensor in the framework of the phase space or Wigner function formalism. This formulation is obtained through the direct application of the Weyl correspondence to the geometric structure under consideration. In particular, we show that the quantum metric tensor can be computed using only the Wigner functions, which opens an alternative way to experimentally measure the components of this tensor. We also address the non-Abelian generalization and obtain the phase space formulation of the Wilczek-Zee connection and the non-Abelian quantum geometric tensor. In this case, the non-Abelian quantum metric tensor involves only the non-diagonal Wigner functions. Then, we verify our approach with examples and apply it to a system of $N$ coupled harmonic oscillators, showing that the associated Berry connection vanishes and obtaining the analytic expression for the quantum metric tensor. Our results indicate that the developed approach is well adapted to study the parameter space associated with quantum many-body systems.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.