Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PBW theory for quantum affine algebras (2011.14253v2)

Published 29 Nov 2020 in math.RT and math.QA

Abstract: Let $U_q'(\mathfrak{g})$ be a quantum affine algebra of arbitrary type and let $\mathcal{C}{\mathfrak{g}}$ be Hernandez-Leclerc's category. We can associate the quantum affine Schur-Weyl duality functor $F_D$ to a duality datum $D$ in $\mathcal{C}{\mathfrak{g}}$. We introduce the notion of a strong (complete) duality datum $D$ and prove that, when $D$ is strong, the induced duality functor $F_D$ sends simple modules to simple modules and preserves the invariants $\Lambda$ and $\Lambda\infty$ introduced by the authors. We next define the reflections $\mathcal{S}k$ and $\mathcal{S}{-1}_k$ acting on strong duality data $D$. We prove that if $D$ is a strong (resp.\ complete) duality datum, then $\mathcal{S}_k(D)$ and $\mathcal{S}_k{-1}(D)$ are also strong (resp.\ complete ) duality data. We finally introduce the notion of affine cuspidal modules in $\mathcal{C}{\mathfrak{g}}$ by using the duality functor $F_D$, and develop the cuspidal module theory for quantum affine algebras similarly to the quiver Hecke algebra case.

Summary

We haven't generated a summary for this paper yet.