2000 character limit reached
Counting arcs on hyperbolic surfaces (2011.13969v1)
Published 27 Nov 2020 in math.GT
Abstract: We give the asymptotic growth of the number of (multi-)arcs of bounded length between boundary components on complete finite-area hyperbolic surfaces with boundary. Specifically, if $S$ has genus $g$, $n$ boundary components and $p$ punctures, then the number of orthogeodesic arcs in each pure mapping class group orbit of length at most $L$ is asymptotic to $L{6g-6+2(n+p)}$ times a constant. We prove an analogous result for arcs between cusps, where we define the length of such an arc to be the length of the sub-arc obtained by removing certain cuspidal regions from the surface.