Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Temporal Neural Network Architecture for Online Learning (2011.13844v2)

Published 27 Nov 2020 in cs.NE, cs.AI, and cs.LG

Abstract: A long-standing proposition is that by emulating the operation of the brain's neocortex, a spiking neural network (SNN) can achieve similar desirable features: flexible learning, speed, and efficiency. Temporal neural networks (TNNs) are SNNs that communicate and process information encoded as relative spike times (in contrast to spike rates). A TNN architecture is proposed, and, as a proof-of-concept, TNN operation is demonstrated within the larger context of online supervised classification. First, through unsupervised learning, a TNN partitions input patterns into clusters based on similarity. The TNN then passes a cluster identifier to a simple online supervised decoder which finishes the classification task. The TNN learning process adjusts synaptic weights by using only signals local to each synapse, and clustering behavior emerges globally. The system architecture is described at an abstraction level analogous to the gate and register transfer levels in conventional digital design. Besides features of the overall architecture, several TNN components are new to this work. Although not addressed directly, the overall research objective is a direct hardware implementation of TNNs. Consequently, all the architecture elements are simple, and processing is done at very low precision.

Citations (11)

Summary

We haven't generated a summary for this paper yet.