Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Transformer-based Online Speech Recognition with Decoder-end Adaptive Computation Steps (2011.13834v1)

Published 27 Nov 2020 in eess.AS

Abstract: Transformer-based end-to-end (E2E) automatic speech recognition (ASR) systems have recently gained wide popularity, and are shown to outperform E2E models based on recurrent structures on a number of ASR tasks. However, like other E2E models, Transformer ASR also requires the full input sequence for calculating the attentions on both encoder and decoder, leading to increased latency and posing a challenge for online ASR. The paper proposes Decoder-end Adaptive Computation Steps (DACS) algorithm to address the issue of latency and facilitate online ASR. The proposed algorithm streams the decoding of Transformer ASR by triggering an output after the confidence acquired from the encoder states reaches a certain threshold. Unlike other monotonic attention mechanisms that risk visiting the entire encoder states for each output step, the paper introduces a maximum look-ahead step into the DACS algorithm to prevent from reaching the end of speech too fast. A Chunkwise encoder is adopted in our system to handle real-time speech inputs. The proposed online Transformer ASR system has been evaluated on Wall Street Journal (WSJ) and AIShell-1 datasets, yielding 5.5% word error rate (WER) and 7.1% character error rate (CER) respectively, with only a minor decay in performance when compared to the offline systems.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Catalin Zorila (11 papers)
  2. Mohan Li (19 papers)
  3. Rama Doddipatla (28 papers)
Citations (16)