Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gradient Descent for Deep Matrix Factorization: Dynamics and Implicit Bias towards Low Rank (2011.13772v5)

Published 27 Nov 2020 in cs.LG and math.OC

Abstract: In deep learning, it is common to use more network parameters than training points. In such scenarioof over-parameterization, there are usually multiple networks that achieve zero training error so that thetraining algorithm induces an implicit bias on the computed solution. In practice, (stochastic) gradientdescent tends to prefer solutions which generalize well, which provides a possible explanation of thesuccess of deep learning. In this paper we analyze the dynamics of gradient descent in the simplifiedsetting of linear networks and of an estimation problem. Although we are not in an overparameterizedscenario, our analysis nevertheless provides insights into the phenomenon of implicit bias. In fact, wederive a rigorous analysis of the dynamics of vanilla gradient descent, and characterize the dynamicalconvergence of the spectrum. We are able to accurately locate time intervals where the effective rankof the iterates is close to the effective rank of a low-rank projection of the ground-truth matrix. Inpractice, those intervals can be used as criteria for early stopping if a certain regularity is desired. Wealso provide empirical evidence for implicit bias in more general scenarios, such as matrix sensing andrandom initialization. This suggests that deep learning prefers trajectories whose complexity (measuredin terms of effective rank) is monotonically increasing, which we believe is a fundamental concept for thetheoretical understanding of deep learning.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Hung-Hsu Chou (9 papers)
  2. Carsten Gieshoff (1 paper)
  3. Johannes Maly (19 papers)
  4. Holger Rauhut (62 papers)
Citations (40)

Summary

We haven't generated a summary for this paper yet.