Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Faster Projective Clustering Approximation of Big Data (2011.13476v1)

Published 26 Nov 2020 in cs.DS

Abstract: In projective clustering we are given a set of n points in $Rd$ and wish to cluster them to a set $S$ of $k$ linear subspaces in $Rd$ according to some given distance function. An $\eps$-coreset for this problem is a weighted (scaled) subset of the input points such that for every such possible $S$ the sum of these distances is approximated up to a factor of $(1+\eps)$. We suggest to reduce the size of existing coresets by suggesting the first $O(\log(m))$ approximation for the case of $m$ lines clustering in $O(ndm)$ time, compared to the existing $\exp(m)$ solution. We then project the points on these lines and prove that for a sufficiently large $m$ we obtain a coreset for projective clustering. Our algorithm also generalize to handle outliers. Experimental results and open code are also provided.

Citations (1)

Summary

We haven't generated a summary for this paper yet.