Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimator Model for Prediction of Power Output of Wave Farms Using Machine Learning Methods (2011.13130v1)

Published 26 Nov 2020 in eess.SP and cs.NE

Abstract: The amount of power generated by a wave farm depends on the Wave Energy Converter (WEC) arrangement along with the usual wave conditions. Therefore, forming the appropriate arrangement of WECs in an array is an important factor in maximizing power absorption. Data collected from the test sites is used to design a neural model for predicting wave farm's power output generated. This paper focuses on developing a neural model for the prediction of wave energy based on the data set derived from the four real wave scenarios from the southern coast of Australia. The applied converter model is a fully submerged three-tether converter called CETO. A precise analysis of the WEC placement is investigated to reveal the amount of power generated by the wave farms on the test site.

Citations (2)

Summary

We haven't generated a summary for this paper yet.