Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

mask-Net: Learning Context Aware Invariant Features using Adversarial Forgetting (Student Abstract) (2011.12979v5)

Published 25 Nov 2020 in cs.SD and cs.AI

Abstract: Training a robust system, e.g.,Speech to Text (STT), requires large datasets. Variability present in the dataset such as unwanted nuisances and biases are the reason for the need of large datasets to learn general representations. In this work, we propose a novel approach to induce invariance using adversarial forgetting (AF). Our initial experiments on learning invariant features such as accent on the STT task achieve better generalizations in terms of word error rate (WER) compared to the traditional models. We observe an absolute improvement of 2.2% and 1.3% on out-of-distribution and in-distribution test sets, respectively.

Citations (1)

Summary

We haven't generated a summary for this paper yet.