Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 33 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 85 tok/s
GPT OSS 120B 468 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

Iterations for the Unitary Sign Decomposition and the Unitary Eigendecomposition (2011.12449v1)

Published 25 Nov 2020 in math.NA and cs.NA

Abstract: We construct fast, structure-preserving iterations for computing the sign decomposition of a unitary matrix $A$ with no eigenvalues equal to $\pm i$. This decomposition factorizes $A$ as the product of an involutory matrix $S = \operatorname{sign}(A) = A(A2){-1/2}$ times a matrix $N = (A2){1/2}$ with spectrum contained in the open right half of the complex plane. Our iterations rely on a recently discovered formula for the best (in the minimax sense) unimodular rational approximant of the scalar function $\operatorname{sign}(z) = z/\sqrt{z2}$ on subsets of the unit circle. When $A$ has eigenvalues near $\pm i$, the iterations converge significantly faster than Pad\'e iterations. Numerical evidence indicates that the iterations are backward stable, with backward errors often smaller than those obtained with direct methods. This contrasts with other iterations like the scaled Newton iteration, which suffers from numerical instabilities if $A$ has eigenvalues near $\pm i$. As an application, we use our iterations to construct a stable spectral divide-and-conquer algorithm for the unitary eigendecomposition.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)