Papers
Topics
Authors
Recent
2000 character limit reached

Nonlinear Quasi-static Poroelasticity

Published 24 Nov 2020 in math.AP | (2011.12356v2)

Abstract: We analyze a quasi-static Biot system of poroelasticity for both compressible and incompressible constituents. The main feature of this model is a nonlinear coupling of pressure and dilation through the system's permeability tensor. Such a model has been analyzed previously from the point of view of constructing weak solutions through a fully discretized approach. In this treatment, we consider simplified Dirichlet type boundary conditions in both the elastic displacement and pressure variables and give a full treatment of weak solutions. Our construction of weak solutions for the nonlinear problem is based on a priori estimates, a requisite feature in addressing the nonlinearity. We utilize a spatial semi-discretization and employ a multi-valued fixed point argument for a clear construction of weak solutions. We also provide regularity criteria for uniqueness of solutions.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.