Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generative Adversarial Stacked Autoencoders (2011.12236v1)

Published 22 Nov 2020 in cs.LG and cs.CV

Abstract: Generative Adversarial Networks (GANs) have become predominant in image generation tasks. Their success is attributed to the training regime which employs two models: a generator G and discriminator D that compete in a minimax zero sum game. Nonetheless, GANs are difficult to train due to their sensitivity to hyperparameter and parameter initialisation, which often leads to vanishing gradients, non-convergence, or mode collapse, where the generator is unable to create samples with different variations. In this work, we propose a novel Generative Adversarial Stacked Convolutional Autoencoder(GASCA) model and a generative adversarial gradual greedy layer-wise learning algorithm de-signed to train Adversarial Autoencoders in an efficient and incremental manner. Our training approach produces images with significantly lower reconstruction error than vanilla joint training.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Ariel Ruiz-Garcia (4 papers)
  2. Ibrahim Almakky (21 papers)
  3. Vasile Palade (24 papers)
  4. Luke Hicks (2 papers)

Summary

We haven't generated a summary for this paper yet.