Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Symmetry Reduction in Optimal Control of Multiagent Systems on Lie Groups (2011.12234v1)

Published 23 Nov 2020 in math.OC, cs.SY, and eess.SY

Abstract: We study the reduction of degrees of freedom for the equations that determine necessary optimality conditions for extrema in an optimal control problem for a multiagent system by exploiting the physical symmetries of agents, where the kinematics of each agent is given by a left-invariant control system. Reduced optimality conditions are obtained using techniques from variational calculus and Lagrangian mechanics. A Hamiltonian formalism is also studied, where the problem is explored through an application of Pontryagin's maximum principle for left-invariant systems, and the optimality conditions are obtained as integral curves of a reduced Hamiltonian vector field. We apply the results to an energy-minimum control problem for multiple unicycles.

Citations (12)

Summary

We haven't generated a summary for this paper yet.