Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning to Sample the Most Useful Training Patches from Images (2011.12097v1)

Published 24 Nov 2020 in cs.CV and cs.MM

Abstract: Some image restoration tasks like demosaicing require difficult training samples to learn effective models. Existing methods attempt to address this data training problem by manually collecting a new training dataset that contains adequate hard samples, however, there are still hard and simple areas even within one single image. In this paper, we present a data-driven approach called PatchNet that learns to select the most useful patches from an image to construct a new training set instead of manual or random selection. We show that our simple idea automatically selects informative samples out from a large-scale dataset, leading to a surprising 2.35dB generalisation gain in terms of PSNR. In addition to its remarkable effectiveness, PatchNet is also resource-friendly as it is applied only during training and therefore does not require any additional computational cost during inference.

Citations (8)

Summary

We haven't generated a summary for this paper yet.