Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Two types of size Ramsey numbers for matchings of small order (2011.12065v2)

Published 24 Nov 2020 in math.CO and cs.DM

Abstract: For simple graphs $G$ and $H$, their size Ramsey number $\hat{r}(G,H)$ is the smallest possible size of $F$ such that for any red-blue coloring of its edges, $F$ contains either a red $G$ or a blue $H$. Similarly, we can define the connected size Ramsey number ${\hat{r}}_c(G,H)$ by adding the prerequisite that $F$ must be connected. In this paper, we explore the relationships between these size Ramsey numbers and give some results on their values for certain classes of graphs. We are mainly interested in the cases where $G$ is either a $2K_2$ or a $3K_2$, and where $H$ is either a cycle $C_n$ or a union of paths $nP_m$. Additionally, we improve an upper bound regarding the values of $\hat{r}(tK_2,P_m)$ and ${\hat{r}}_c(tK_2,P_m)$ for certain $t$ and $m$.

Citations (1)

Summary

We haven't generated a summary for this paper yet.