Papers
Topics
Authors
Recent
Search
2000 character limit reached

Computing Feasible Trajectories for an Articulated Probe in Three Dimensions

Published 23 Nov 2020 in cs.CG | (2011.11685v1)

Abstract: Consider an input consisting of a set of $n$ disjoint triangular obstacles in $\mathbb{R}3$ and a target point $t$ in the free space, all enclosed by a large sphere $S$ of radius $R$ centered at $t$. An articulated probe is modeled as two line segments $ab$ and $bc$ connected at point $b$. The length of $ab$ can be equal to or greater than $R$, while $bc$ is of a given length $r \leq R$. The probe is initially located outside $S$, assuming an unarticulated configuration, in which $ab$ and $bc$ are collinear and $b \in ac$. The goal is to find a feasible (obstacle-avoiding) probe trajectory to reach $t$, with the condition that the probe is constrained by the following sequence of moves -- a straight-line insertion of the unarticulated probe into $S$, possibly followed by a rotation of $bc$ at $b$ for at most $\pi/2$ radians, so that $c$ coincides with $t$. We prove that if there exists a feasible probe trajectory, then a set of extremal feasible trajectories must be present. Through careful case analysis, we show that these extremal trajectories can be represented by $O(n4)$ combinatorial events. We present a solution approach that enumerates and verifies these combinatorial events for feasibility in overall $O(n{4+\epsilon})$ time using $O(n{4+\epsilon})$ space, for any constant $\epsilon > 0$. The enumeration algorithm is highly parallel, considering that each combinatorial event can be generated and verified for feasibility independently of the others. In the process of deriving our solution, we design the first data structure for addressing a special instance of circular sector emptiness queries among polyhedral obstacles in three dimensional space, and provide a simplified data structure for the corresponding emptiness query problem in two dimensions.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.