Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Disjoint cycles with length constraints in digraphs of large connectivity or minimum degree (2011.11605v1)

Published 23 Nov 2020 in math.CO

Abstract: A conjecture by Lichiardopol states that for every $k \ge 1$ there exists an integer $g(k)$ such that every digraph of minimum out-degree at least $g(k)$ contains $k$ vertex-disjoint directed cycles of pairwise distinct lengths. Motivated by Lichiardopol's conjecture, we study the existence of vertex-disjoint directed cycles satisfying length constraints in digraphs of large connectivity or large minimum degree. Our main result is that for every $k \in \mathbb{N}$, there exists $s(k) \in \mathbb{N}$ such that every strongly $s(k)$-connected digraph contains $k$ vertex-disjoint directed cycles of pairwise distinct lengths. In contrast, for every $k \in \mathbb{N}$ we construct a strongly $k$-connected digraph containing no two vertex- or arc-disjoint directed cycles of the same length. It is an open problem whether $g(3)$ exists. Here we prove the existence of an integer $K$ such that every digraph of minimum out- and in-degree at least $K$ contains $3$ vertex-disjoint directed cycles of pairwise distinct lengths.

Summary

We haven't generated a summary for this paper yet.