Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Synchronization of oscillators with hyperbolic chaotic phases (2011.11310v1)

Published 23 Nov 2020 in nlin.CD and nlin.AO

Abstract: Synchronization in a population of oscillators with hyperbolic chaotic phases is studied for two models. One is based on the Kuramoto dynamics of the phase oscillators and on the Bernoulli map applied to these phases. This system possesses an Ott-Antonsen invariant manifold, allowing for a derivation of a map for the evolution of the complex order parameter. Beyond a critical coupling strength, this model demonstrates bistability synchrony-disorder. Another model is based on the coupled autonomous oscillators with hyperbolic chaotic strange attractors of Smale-Williams type. Here a disordered asynchronous state at small coupling strengths, and a completely synchronous state at large couplings are observed. Intermediate regimes are characterized by different levels of complexity of the global order parameter dynamics.

Summary

We haven't generated a summary for this paper yet.