Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Global Weak Solutions to the Navier-Stokes-Darcy-Boussinesq System for Thermal Convection in Coupled Free and Porous Media Flows (2011.11243v2)

Published 23 Nov 2020 in math.AP

Abstract: We study the Navier-Stokes-Darcy-Boussinesq system that models the thermal convection of a fluid overlying a saturated porous medium in a general decomposed domain. In both two and three spatial dimensions, we first prove the existence of global weak solutions to the initial boundary value problem subject to the Lions and Beavers-Joseph-Saffman-Jones interface conditions. The proof is based on a proper time-implicit discretization scheme combined with the Leray-Schauder principle and compactness arguments. Next, we establish a weak-strong uniqueness result such that a weak solution coincides with a strong solution emanating from the same initial data as long as the latter exists.

Summary

We haven't generated a summary for this paper yet.