Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Empirical Study of Representation Learning for Reinforcement Learning in Healthcare (2011.11235v1)

Published 23 Nov 2020 in cs.LG

Abstract: Reinforcement Learning (RL) has recently been applied to sequential estimation and prediction problems identifying and developing hypothetical treatment strategies for septic patients, with a particular focus on offline learning with observational data. In practice, successful RL relies on informative latent states derived from sequential observations to develop optimal treatment strategies. To date, how best to construct such states in a healthcare setting is an open question. In this paper, we perform an empirical study of several information encoding architectures using data from septic patients in the MIMIC-III dataset to form representations of a patient state. We evaluate the impact of representation dimension, correlations with established acuity scores, and the treatment policies derived from them. We find that sequentially formed state representations facilitate effective policy learning in batch settings, validating a more thoughtful approach to representation learning that remains faithful to the sequential and partial nature of healthcare data.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Taylor W. Killian (9 papers)
  2. Haoran Zhang (102 papers)
  3. Jayakumar Subramanian (15 papers)
  4. Mehdi Fatemi (17 papers)
  5. Marzyeh Ghassemi (96 papers)
Citations (33)

Summary

We haven't generated a summary for this paper yet.