Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fairness-guided SMT-based Rectification of Decision Trees and Random Forests (2011.11001v1)

Published 22 Nov 2020 in cs.LG

Abstract: Data-driven decision making is gaining prominence with the popularity of various machine learning models. Unfortunately, real-life data used in machine learning training may capture human biases, and as a result the learned models may lead to unfair decision making. In this paper, we provide a solution to this problem for decision trees and random forests. Our approach converts any decision tree or random forest into a fair one with respect to a specific data set, fairness criteria, and sensitive attributes. The \emph{FairRepair} tool, built based on our approach, is inspired by automated program repair techniques for traditional programs. It uses an SMT solver to decide which paths in the decision tree could have their outcomes flipped to improve the fairness of the model. Our experiments on the well-known adult dataset from UC Irvine demonstrate that FairRepair scales to realistic decision trees and random forests. Furthermore, FairRepair provides formal guarantees about soundness and completeness of finding a repair. Since our fairness-guided repair technique repairs decision trees and random forests obtained from a given (unfair) data-set, it can help to identify and rectify biases in decision-making in an organisation.

Citations (8)

Summary

We haven't generated a summary for this paper yet.