Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On algorithms to find p-ordering (2011.10978v1)

Published 22 Nov 2020 in math.NT and cs.CC

Abstract: The concept of p-ordering for a prime p was introduced by Manjul Bhargava (in his PhD thesis) to develop a generalized factorial function over an arbitrary subset of integers. This notion of p-ordering provides a representation of polynomials modulo prime powers, and has been used to prove properties of roots sets modulo prime powers. We focus on the complexity of finding a p-ordering given a prime p, an exponent k and a subset of integers modulo pk. Our first algorithm gives a p-ordering for set of size n in time O(nk\log p), where set is considered modulo pk. The subsets modulo pk can be represented succinctly using the notion of representative roots (Panayi, PhD Thesis, 1995; Dwivedi et.al, ISSAC, 2019); a natural question would be, can we find a p-ordering more efficiently given this succinct representation. Our second algorithm achieves precisely that, we give a p-ordering in time O(d2k\log p + nk \log p + nd), where d is the size of the succinct representation and n is the required length of the p-ordering. Another contribution that we make is to compute the structure of roots sets for prime powers pk, when k is small. The number of root sets have been given in the previous work (Dearden and Metzger, Eur. J. Comb., 1997; Maulick, J. Comb. Theory, Ser. A, 2001), we explicitly describe all the root sets for p2, p3 and p4.

Citations (3)

Summary

We haven't generated a summary for this paper yet.