Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MRAC-RL: A Framework for On-Line Policy Adaptation Under Parametric Model Uncertainty (2011.10562v1)

Published 20 Nov 2020 in eess.SY, cs.LG, cs.RO, and cs.SY

Abstract: Reinforcement learning (RL) algorithms have been successfully used to develop control policies for dynamical systems. For many such systems, these policies are trained in a simulated environment. Due to discrepancies between the simulated model and the true system dynamics, RL trained policies often fail to generalize and adapt appropriately when deployed in the real-world environment. Current research in bridging this sim-to-real gap has largely focused on improvements in simulation design and on the development of improved and specialized RL algorithms for robust control policy generation. In this paper we apply principles from adaptive control and system identification to develop the model-reference adaptive control & reinforcement learning (MRAC-RL) framework. We propose a set of novel MRAC algorithms applicable to a broad range of linear and nonlinear systems, and derive the associated control laws. The MRAC-RL framework utilizes an inner-loop adaptive controller that allows a simulation-trained outer-loop policy to adapt and operate effectively in a test environment, even when parametric model uncertainty exists. We demonstrate that the MRAC-RL approach improves upon state-of-the-art RL algorithms in developing control policies that can be applied to systems with modeling errors.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Anubhav Guha (3 papers)
  2. Anuradha Annaswamy (12 papers)
Citations (11)

Summary

We haven't generated a summary for this paper yet.