Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Intrinsic Image Decomposition using Paradigms (2011.10512v1)

Published 20 Nov 2020 in cs.CV

Abstract: Intrinsic image decomposition is the classical task of mapping image to albedo. The WHDR dataset allows methods to be evaluated by comparing predictions to human judgements ("lighter", "same as", "darker"). The best modern intrinsic image methods learn a map from image to albedo using rendered models and human judgements. This is convenient for practical methods, but cannot explain how a visual agent without geometric, surface and illumination models and a renderer could learn to recover intrinsic images. This paper describes a method that learns intrinsic image decomposition without seeing WHDR annotations, rendered data, or ground truth data. The method relies on paradigms - fake albedos and fake shading fields - together with a novel smoothing procedure that ensures good behavior at short scales on real images. Long scale error is controlled by averaging. Our method achieves WHDR scores competitive with those of strong recent methods allowed to see training WHDR annotations, rendered data, and ground truth data. Because our method is unsupervised, we can compute estimates of the test/train variance of WHDR scores; these are quite large, and it is unsafe to rely small differences in reported WHDR.

Citations (24)

Summary

We haven't generated a summary for this paper yet.