2000 character limit reached
Weighted automata are compact and actively learnable (2011.10498v3)
Published 20 Nov 2020 in cs.FL
Abstract: We show that weighted automata over the field of two elements can be exponentially more compact than non-deterministic finite state automata. To show this, we combine ideas from automata theory and communication complexity. However, weighted automata are also efficiently learnable in Angluin's minimal adequate teacher model in a number of queries that is polynomial in the size of the minimal weighted automaton.. We include an algorithm for learning WAs over any field based on a linear algebraic generalization of the Angluin-Schapire algorithm. Together, this produces a surprising result: weighted automata over fields are structured enough that even though they can be very compact, they are still efficiently learnable.