Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural graph embeddings as explicit low-rank matrix factorization for link prediction (2011.09907v3)

Published 16 Nov 2020 in cs.SI, cs.AI, cs.LG, cs.NA, and math.NA

Abstract: Learning good quality neural graph embeddings has long been achieved by minimizing the point-wise mutual information (PMI) for co-occurring nodes in simulated random walks. This design choice has been mostly popularized by the direct application of the highly-successful word embedding algorithm word2vec to predicting the formation of new links in social, co-citation, and biological networks. However, such a skeuomorphic design of graph embedding methods entails a truncation of information coming from pairs of nodes with low PMI. To circumvent this issue, we propose an improved approach to learning low-rank factorization embeddings that incorporate information from such unlikely pairs of nodes and show that it can improve the link prediction performance of baseline methods from 1.2% to 24.2%. Based on our results and observations we outline further steps that could improve the design of next graph embedding algorithms that are based on matrix factorization.

Citations (22)

Summary

We haven't generated a summary for this paper yet.