Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An $L^4$ maximal estimate for quadratic Weyl sums (2011.09885v4)

Published 19 Nov 2020 in math.CA, math.AP, and math.NT

Abstract: We show that $$\bigg|\sup_{0 < t < 1} \big|\sum_{n=1}{N} e{2\pi i (n(\cdot) + n2 t)}\big| \bigg|{L{4}([0,1])} \leq C{\epsilon} N{3/4 + \epsilon}$$ and discuss some applications to the theory of large values of Weyl sums. This estimate is sharp for quadratic Weyl sums, up to the loss of $N{\epsilon}$.

Summary

We haven't generated a summary for this paper yet.