Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Continuous Emotion Recognition with Spatiotemporal Convolutional Neural Networks (2011.09280v2)

Published 18 Nov 2020 in cs.CV and cs.LG

Abstract: Facial expressions are one of the most powerful ways for depicting specific patterns in human behavior and describing human emotional state. Despite the impressive advances of affective computing over the last decade, automatic video-based systems for facial expression recognition still cannot handle properly variations in facial expression among individuals as well as cross-cultural and demographic aspects. Nevertheless, recognizing facial expressions is a difficult task even for humans. In this paper, we investigate the suitability of state-of-the-art deep learning architectures based on convolutional neural networks (CNNs) for continuous emotion recognition using long video sequences captured in-the-wild. This study focuses on deep learning models that allow encoding spatiotemporal relations in videos considering a complex and multi-dimensional emotion space, where values of valence and arousal must be predicted. We have developed and evaluated convolutional recurrent neural networks combining 2D-CNNs and long short term-memory units, and inflated 3D-CNN models, which are built by inflating the weights of a pre-trained 2D-CNN model during fine-tuning, using application-specific videos. Experimental results on the challenging SEWA-DB dataset have shown that these architectures can effectively be fine-tuned to encode the spatiotemporal information from successive raw pixel images and achieve state-of-the-art results on such a dataset.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Thomas Teixeira (3 papers)
  2. Eric Granger (121 papers)
  3. Alessandro Lameiras Koerich (41 papers)
Citations (7)

Summary

We haven't generated a summary for this paper yet.