Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MUST-GAN: Multi-level Statistics Transfer for Self-driven Person Image Generation (2011.09084v3)

Published 18 Nov 2020 in cs.CV

Abstract: Pose-guided person image generation usually involves using paired source-target images to supervise the training, which significantly increases the data preparation effort and limits the application of the models. To deal with this problem, we propose a novel multi-level statistics transfer model, which disentangles and transfers multi-level appearance features from person images and merges them with pose features to reconstruct the source person images themselves. So that the source images can be used as supervision for self-driven person image generation. Specifically, our model extracts multi-level features from the appearance encoder and learns the optimal appearance representation through attention mechanism and attributes statistics. Then we transfer them to a pose-guided generator for re-fusion of appearance and pose. Our approach allows for flexible manipulation of person appearance and pose properties to perform pose transfer and clothes style transfer tasks. Experimental results on the DeepFashion dataset demonstrate our method's superiority compared with state-of-the-art supervised and unsupervised methods. In addition, our approach also performs well in the wild.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Tianxiang Ma (12 papers)
  2. Bo Peng (304 papers)
  3. Wei Wang (1793 papers)
  4. Jing Dong (125 papers)
Citations (24)

Summary

We haven't generated a summary for this paper yet.