Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine-Learning Number Fields (2011.08958v1)

Published 17 Nov 2020 in math.NT, hep-th, and stat.ML

Abstract: We show that standard machine-learning algorithms may be trained to predict certain invariants of algebraic number fields to high accuracy. A random-forest classifier that is trained on finitely many Dedekind zeta coefficients is able to distinguish between real quadratic fields with class number 1 and 2, to 0.96 precision. Furthermore, the classifier is able to extrapolate to fields with discriminant outside the range of the training data. When trained on the coefficients of defining polynomials for Galois extensions of degrees 2, 6, and 8, a logistic regression classifier can distinguish between Galois groups and predict the ranks of unit groups with precision >0.97.

Citations (10)

Summary

We haven't generated a summary for this paper yet.